3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 82 Solved: 49[][][]Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing yet another one of their crazy games with Farmer John. The cows will arrange themselves in a line and ask Farmer John what their line number is. In return, Farmer John can give them a line number and the cows must rearrange themselves into that line. A line number is assigned by numbering all the permutations of the line in lexicographic order. Consider this example: Farmer John has 5 cows and gives them the line number of 3. The permutations of the line in ascending lexicographic order: 1st: 1 2 3 4 5 2nd: 1 2 3 5 4 3rd: 1 2 4 3 5 Therefore, the cows will line themselves in the cow line 1 2 4 3 5. The cows, in return, line themselves in the configuration "1 2 5 3 4" and ask Farmer John what their line number is. Continuing with the list: 4th : 1 2 4 5 3 5th : 1 2 5 3 4 Farmer John can see the answer here is 5 Farmer John and the cows would like your help to play their game. They have K (1 <= K <= 10,000) queries that they need help with. Query i has two parts: C_i will be the command, which is either 'P' or 'Q'. If C_i is 'P', then the second part of the query will be one integer A_i (1 <= A_i <= N!), which is a line number. This is Farmer John challenging the cows to line up in the correct cow line. If C_i is 'Q', then the second part of the query will be N distinct integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the cows challenging Farmer John to find their line number. 有N头牛,分别用1……N表示,排成一行。 将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 例如:有5头牛 1st: 1 2 3 4 5 2nd: 1 2 3 5 4 3rd: 1 2 4 3 5 4th : 1 2 4 5 3 5th : 1 2 5 3 4 …… 现在,已知N头牛的排列方式,求这种排列方式的行号。 或者已知行号,求牛的排列方式。 所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 如果,行号是3,则排列方式为1 2 4 3 5 如果,排列方式是 1 2 5 3 4 则行号为5 有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K * Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. Line 2*i will contain just one character: 'Q' if the cows are lining up and asking Farmer John for their line number or 'P' if Farmer John gives the cows a line number. If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated integers B_ij which represent the cow line. If the line 2*i is 'P', then line 2*i+1 will contain a single integer A_i which is the line number to solve for. 第1行:N和K 第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i. If line 2*i of the input was 'Q', then this line will contain a single integer, which is the line number of the cow line in line 2*i+1. If line 2*i of the input was 'P', then this line will contain N space separated integers giving the cow line of the number in line 2*i+1. 第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
Sample Output
HINT
Source
题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)
本题我在某某地方看到了一个新的很神奇的算法——康托展开(,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的
1 /************************************************************** 2 Problem: 3301 3 User: HansBug 4 Language: Pascal 5 Result: Accepted 6 Time:192 ms 7 Memory:228 kb 8 ****************************************************************/ 9 10 var11 list:array[0..20] of int64;12 i,j,k,l,m,n:longint;13 a1,a2,a3,a4,a5:int64;14 a,b,c,d:array[0..100] of int64;15 ch:char;16 procedure add(x:longint);17 begin18 if x=0 then exit;19 while x<=n do20 begin21 inc(c[x]);22 inc(x,x and -x);23 end;24 end;25 function sum(x:longint):int64;26 begin27 if x=0 then exit(0);28 sum:=0;29 while x>0 do30 begin31 inc(sum,c[x]);32 dec(x,x and -x)33 end;34 end;35 begin36 list[0]:=1;37 for i:=1 to 20 do list[i]:=list[i-1]*i;38 readln(n,m);39 for i:=1 to m do40 begin41 readln(ch);42 case upcase(ch) of43 'P':begin44 readln(a1);45 a1:=a1-1;46 for j:=1 to n do47 begin48 a[j]:=a1 div list[n-j];49 a1:=a1 mod list[n-j];50 end;51 fillchar(c,sizeof(c),0);52 for j:=1 to n do53 begin54 l:=0;55 for k:=1 to n do56 begin57 if c[k]=1 then continue;58 if a[j]=l then59 begin60 d[j]:=k;61 c[k]:=1;62 end;63 inc(l);64 end;65 end;66 for j:=1 to n do if j